Pengertian Bilangan dan Macam-Macam Bilangan

Bilangan adalah kumpulan angka yang menempati urutan dari sebelah kanan sebagai nilai satuan, puluhan, ratusan, ribuan dan seterusnya. Sedangkan pengertian bilangan menurut wikipedia yaitu suatu konsep matematika yang dipergunakan untuk pencacahan serta pengukuran.

Simbol dan lambang yang dipakai untuk mewakili suatu bilangan disebut dengan angka atau lambang bilangan. Didalam matematika, konsep bilangan selama bertahun-tahun lamanya telah diperluas meliputi bilangan nol, bilangan negatif, bilangan rasional, bilangan irasional, serta bilangan kompleks.

Bilangan adalah kumpulan angka yang menempati urutan dari sebelah kanan sebagai nilai satu Pengertian Bilangan dan Macam-Macam Bilangan


Macam-macam Bilangan


1. Bilangan Cacah
Bilangan cacah adalah bilangan yang dimulai dari angka 0 dan selalu bertambah 1 dengan bilangan setelahnya.
contoh : 0, 1, 2, 3, 4 dan seterusnya.

2. Bilangan Asli
Bilangan asli adalah bilangan yang dimulai dari angka 1 dan bertambah 1.
contoh : 1, 2, 3, 4, 5 dan seterusnya.

3. Pecahan Biasa
Pecahan biasa adalah bilangan yang dapat dinyatakan dalam a/b, dengan a dan b adalah bilangan bulat dan b ≠ 0. Bilangan a disebut dengan pembilang sedangkan bilangan b disebut dengan penyebut.
contoh : 7/3, 1/3, 5/66

4. Bilangan Bulat
Bilangan bulat adalah himpunan bilangan bulat negatif, bilangan nol dan bilangan bulat positif.
contoh : ...., -3, -2, -1, 0, 1, 2, 3, .....

5. Bilangan Prima
Bilangan prima adalah seluruh bilangan asli yang hanya mempunyai faktor pembagi satu dan bilangan itu sendiri atau bilangan yang hanya dapat dibagi oleh 1 dan bilangan itu sendiri.
contoh : 2, 3, 5, 7, 11,....

6. Bilangan Komposit
Bilangan komposit adalah seluruh bilangan asli kecuali 1 dan tidak termasuk dalam bilangan prima.
contoh : 4, 6, 8, 9, 10,.....

7. Bilangan Rasional.
Bilangan rasional adalah semua bilangan yang dinyatakan dalam bentuk a/b, dengan a dan b adalah anggota bilangan bulat serta b ≠ 0.

8. Bilangan Irasional
Bilangan irasional adalah bilangan yang tidak dapat dinyatakan dalam bentuk a/b, dengan a dan b adalah anggota bilangan bulat serta b ≠ 0. adalah kebalikan bilangan rasional.

9. Bilangan Riil
Bilangan riil adalah adalah gabungan dari bilangan rasional dengan bilangan irasional.

10. Bilangan Desimal
Bilangan desimal adalah bilangan yang mempunyai bentuk ciri ciri antar bilangan dipisahkan dengan tanda koma sebanyak satu.

11. Bilangan Pangkat
Bilangan pangkat adalah bilangan yang dihasilkan dari mengalikan sebuah bilangan beberapa kali.

12. Bilangan Imajiner
Bilangan Imajiner atau yang dikenal dengan bilangan khayal adalah bilangan yang mempunyai sifat  i2 = −1 . Dengan kata lain, bilangan tersebut mempunyai akar negatif.
Contoh : I = { i, 4i, 5i, ….. }

13 . Bilangan Kompleks
Bilangan kompleks ialah bilangan yang dinotasikan oleh a+bi , dimana a dan b ialah bilangan riil, dan i ialah suatu bilangan imajiner dimana i 2 = −1. Bilangan riil a disebut juga bagian riil dari bilangan kompleks, dan bilangan real b disebut bagian imajiner. Bila dalam satu bilangan kompleks, nilai b ialah 0, jadi bilangan kompleks itu menjadi sama juga dengan bilangan real a.

Untuk contoh, 3 + 2i adalah bilangan kompleks dengan bagian riil 3 dan bagian imajiner 2i.

14. Bilangan Genap
Bilangan Genap adalah bilangan yang dapat dinyatakan dalam bentuk 2n dan bilangan itu habis dibagi dengan bilangan 2.
Contoh: {2, 4, 6, 8, 10, 12, ….}

15. Bilangan Ganjil
Bilangan Ganjil adalah bilangan yang dapat dinyatakan dalam bentuk 2n – 1 dan tidak habis dibagi dengan bilangan 2.
Contoh: {-3, -1, 1, 3, 5, 7, 9, 11, 13, 15, … }

16. Bilangan Nol
Bilangan 0 adalah satu angka kosong (0) untuk mewakili angka di angka. Peranan terpenting angka 0 ialah menjadi identitas untuk bilangan real, bulat, dan aljabar yang lain.

17. Bilangan Negatif
Bilangan negatif ialah suatu bilangan yang mempunyai nilai minus (-) atau negatif.
Contoh: { dan seterusnya -5, -4, -3, -2, -1 }

Demikianlah sekelumit uraian mengenai pengertian bilangan dan macam macam bilangan, Semoga bermanfaat bagi pembaca semua.


EmoticonEmoticon